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I. Affectation et mémoire 
 
Les variables sont des conteneurs utilisés pour stocker des données en mémoire. En Python, les 
variables peuvent stocker différents types de données, tels que des entiers, des flottants, des chaînes 
de caractères, des listes, des dictionnaires, etc. 
 

I.1. Affectation de variables 
 
L'affectation d'une variable signifie attribuer une valeur à une variable. En Python, cela se fait à 
l'aide de l'opérateur =. 
 
# Affectation de valeurs 
x = 10          # Entier 
y = 3.14        # Flottant 
nom = "Arthur"   # Chaîne de caractères 
is_active = True  # Booléen 
 
# Affectation de collections 
liste = [1, 2, 3] 
dictionnaire = {"clé": "valeur"}` 
 
a, b, c = 1, 2, 3 # Affectation multiple 
x = y = z = 0  # Toutes les variables reçoivent la même valeur 
 
En Python, les variables n'ont pas de type fixe. Une variable peut changer de type au cours de 
l'exécution du programme. 
x = 10       # Entier 
x = 3.14     # Flottant 
x = "Arthur"  # Chaîne de caractères 
 

I.2. Gestion de la mémoire 
En Python, la gestion de la mémoire est automatique grâce au ramasse-miettes (garbage collector). 
Cependant, il est utile de comprendre comment les variables et les objets sont stockés en mémoire. 
 
Lorsque vous assignez une valeur à une variable, vous créez un objet en mémoire et la variable fait 
référence à cet objet. 
1. a = 10 
2. b = a 
3. b = 20 
# Ici, 'a' est toujours 10, 'b' est 20 
 
Dans cet exemple, a et b sont initialement des références au même objet (10). Cependant, 
lorsqu'une nouvelle valeur (20) est affectée à b, un nouvel objet est créé en mémoire et b fait 
référence à ce nouvel objet. a reste inchangé. 
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Ligne 1 Ligne 2 Ligne 3 

   

 
 

• Types immuables : Les objets de ces types ne peuvent pas être modifiés après leur création. 
Les types immuables incluent les entiers, flottants, chaînes de caractères, tuples, etc. 

• Types mutables : Les objets de ces types peuvent être modifiés après leur création. Les 
types mutables incluent les listes, dictionnaires, ensembles, etc. 

 
C’est un point important et il faudra être vigilant, notamment dans le cas d’une copie d’une liste 
avec une affectation. 
Voyons cela : 
 

Types immuables Types mutables 
a = 1 
b = a 
a = 2 
On aura la variable a qui vaudra 2 et la variable 
b vaudra 1 

l1 = [1, 2, 3] 
l2 = l1 
l1[0] = 7 
La modification que nous faisons de la liste l1 
en ligne 3, va aussi affecter la liste l2 à cause 
de la ligne 2 et du type mutable des listes. Donc, 
vigilance !!! 

 
Ramasse-miettes (Garbage Collection) 
Python utilise un ramasse-miettes automatique pour gérer la mémoire et libérer de l'espace occupé 
par des objets qui ne sont plus référencés. Cela se fait principalement par comptage de références et 
détection de cycles. 
 

II. Sommer une série / boucles 
 
Une instruction du type x = x + 1,  permet, quand on l’itère, de calculer des sommes. 
Une suite d’instructions telles que :  
x = 1 
S = 0 
S = S + x 
S = S + x 

20 

10 a 

Mémoire Mémoire Mémoire Variable(s) Variable(s) Variable(s) 

b 

10 a 

b 

10 a 
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S = S + x 
va avoir l’effet suivant: 
Introduire le nombre 1 dans la machine, dans une case mémoire qui le contiendra sous l’appellation 
x, introduire de même, dans une case mémoire qui contient la variable S le nombre 0, aller chercher 
les contenus des deux cases mémoires précédentes, les ajouter et replacer le résultat dans la case qui 
contenait la variable S. 
On a ainsi S = 1 à l’issue de cette première étape. 
On recommence l’opération précédente et on obtient S = 2, et on recommence une dernière fois pour 
arriver à S = 3. 
Afin d’éviter d’écrire l’instruction S = S + x 3 fois, on utilise une boucle for. 
Initialisation : 
x=1, s=0 
Pour i allant de 1 à 3 faire 
    S = S +x 
Fin Pour 
Afficher S 
 
Une instruction de type boucle for introduit un indice, que l’on a noté ici i. 
Cet indice va prendre successivement les valeurs de 1 à 3 à chaque nouvelle boucle. 
 
Remarque : 
Dans Python, pour l’instruction for i in range(1,3):, i prendra les valeurs 1 et 2 et non 3… 
 
Essayons de calculer (avec la précision numérique permise par la machine), la somme de la série 
géométrique : 

𝑆 = #(
1
4)

(
)

(*+

 

 
Exercice 1: 
Calculer (à la main), 	

𝑆 = #(
1
4)

(
)

(*+

 

 
 
Nous allons maintenant voir comment retrouver cela avec la machine en retenant les 2 principes de 
base du calcul scientifique : 
1. L’ordinateur calcul toujours faux ! 
2. On teste un algorithme pour un problème dont on connait la solution. 
 
Le premier point a été abordé durant la séance 1.  
Pour le second, c’est un point essentiel qui nous permet de relever les erreurs de programmation qui 
conduiraient à un résultat inexact. Et c’est une habitude qu’il faudra garder. 
 
Pour évaluer approximativement 𝑆, nous allons introduire la suite géométrique (𝑦()(∈ℕ, telle que : 
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𝑦0 = 1	𝑒𝑡	∀𝑘 ∈ ℕ, 𝑦(6+ =
1
4𝑦( 

On a ainsi,  

𝑆7 = #𝑦(

7

(*+

= 𝑆78+ + 𝑦7 

 
On initialise l’algorithme avec : 𝒚 = 𝟏, 𝑺 = 𝟎. 
Puis, on effectue « un certain nombre de fois » l’opération qui consiste à calculer le nouveau terme 
y de la suite géométrique : 𝒚 = 𝒚

𝟒
 et à ajouter le résultat obtenu à la somme partielle : 𝑺 = 𝑺 + 𝒚. 

 
On obtient ce script en Python : 
y=1 
S=0 
for i in range(1, 26): 
    y=y/4 
    S=S+y    
print(S)  
On obtient ainsi une bonne approximation de +

?
. 

Remarque : 
L’ordre des instructions est très important, il ne faut pas ici intervertir les lignes y=y/4 et S=S+y, 
au risque de trouver un mauvais résultat. 
 

III. Séries convergentes/divergentes 
 
En mathématiques, déterminer si une série converge (s'approche d'une limite finie) ou diverge (ne 
s'approche pas d'une limite finie) est une question fondamentale. En calcul scientifique et en 
informatique, utiliser un ordinateur pour évaluer la convergence ou la divergence des séries est 
courant, notamment pour les séries complexes ou difficiles à analyser analytiquement. 
 
Définitions 

• Série convergente : Une série ∑ 𝑎7)
7*+  est convergente si la suite de ses sommes partielles 

𝑆B = ∑ 𝑎7B
7*+  tend vers une limite finie L lorsque 𝑁 → ∞. 

• Série divergente : Une série ∑ 𝑎7)
7*+  est divergente si la suite de ses sommes partielles 

𝑆B = ∑ 𝑎7B
7*+  ne tend pas vers une limite finie lorsque 𝑁 → ∞. 

 Le calcul numérique permet de découvrir expérimentalement qu’une série converge. Après un 
nombre fini (qui peut être grand) d’étapes, on aura la somme partielle qui deviendra une suite 
stationnaire et l’expérience numérique indique une convergence. 
La certitude de divergence est plus compliquée à atteindre. Dans ce cas l’analyse mathématiques du 
problème peut aider. 
 
Considérons la série harmonique 𝑆B suivante : 
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𝑆B = #
1
𝑘

B

(*+

	, 𝑁 ≥ 1 

Le terme général de la série, 𝑢( =
+
(
 tend vers 0 lorsque 𝑘 tend vers l’infini. 

L’expérience numérique indique : 
𝑆+0 = 2,929  𝑆+00 = 5,187  𝑆+000 = 7,485  𝑆+0000 = 9,78 

 
Soit une croissance lente. 
Comment prouver que 𝑆B ⟶ ∞ quand 𝑁 ⟶∞	? 
 
On a plusieurs façons de le montrer : 
Méthode 1 : Comparaison série – intégrale 
Soit la fonction 𝑓	tel que 𝑢7 =

+
7
= 𝑓(𝑛). 

𝑓	est décroissante sur ]0;	+∞[, on peut dont encadrer 
∀	𝑡 ∈ [𝑛; 𝑛 + 1], 𝑓(𝑛 + 1) ≤ 𝑓(𝑡) ≤ 𝑓(𝑛) 

 

U 𝑓(𝑛 + 1)	𝑑𝑡
76+

7
≤ U 𝑓(𝑡)	𝑑𝑡

76+

7
≤ U 𝑓(𝑛)	𝑑𝑡

76+

7
 

⟺ 𝑓(𝑛 + 1)U 𝑑𝑡
76+

7
≤ U 𝑓(𝑡)	𝑑𝑡

76+

7
≤ 𝑓(𝑛)U 𝑑𝑡

76+

7
 

⟺ 𝑓(𝑛 + 1). [t]776+ ≤ U 𝑓(𝑡)	𝑑𝑡
76+

7
≤ 𝑓(𝑛). [t]776+ 

 

⟺ 𝑓(𝑛 + 1). (𝑛 + 1 − 1) ≤ U 𝑓(𝑡)	𝑑𝑡
76+

7
≤ 𝑓(𝑛). (𝑛 + 1 − 1) 

⟺ 𝑓(𝑛 + 1) ≤ U 𝑓(𝑡)	𝑑𝑡
76+

7
≤ 𝑓(𝑛) 

 
Avec 𝑓(𝑛 + 1) ≤ ∫ 𝑓(𝑡)	𝑑𝑡76+

7 , en remplaçant 𝑛 + 1 par 𝑛, on trouve : 𝑓(𝑛) ≤ ∫ 𝑓(𝑡)	𝑑𝑡7
78+  

Ce qui nous donne ainsi : 

U 𝑓(𝑡)	𝑑𝑡
76+

7
≤ 𝑓(𝑛) ≤ U 𝑓(𝑡)	𝑑𝑡

7

78+
 

En sommant, on obtient : 

#U 𝑓(𝑡)	𝑑𝑡
76+

7

B

7*+

≤ #𝑓(𝑛)
B

7*+

≤ #U 𝑓(𝑡)	𝑑𝑡
7

78+

B

7*+

 

 

⟺U 𝑓(𝑡)	𝑑𝑡
B6+

+
≤ #𝑓(𝑛)

B

7*+

≤ U 𝑓(𝑡)	𝑑𝑡
B

0
 

 
Dans notre cas, l’intégration est simple : 
 

U
1
𝑡 	𝑑𝑡

B6+

+
≤ #𝑓(𝑛)

B

7*+

≤ 1 + U
1
𝑡 	𝑑𝑡

B

+
 

car 𝑓(𝑛) et 𝑓(𝑛 + 1) 
sont des constantes 
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⟺ [ln(𝑡)]+B6+ ≤ #𝑓(𝑛)
B

7*+

≤ 1 + [ln	(𝑡)]+B 

⟺ ln(𝑁 + 1) ≤ #𝑓(𝑛)
B

7*+

≤ 1 + ln	(𝑁) 

 
Quand N tend vers l’infini, ln(𝑁 + 1) et ln(𝑁) tendent vers l’infini. Notre série est donc divergente. 
 
Méthode 2 :  𝑺𝟐𝑵 − 𝑺𝑵 
On a :𝑆`B − 𝑆B = ∑ +

(
`B
(*B6+ ≥ +

`B
+ +

`B
+ ⋯+ +

`B
= 𝑁 × +

`B
= +

`
 

𝑆` − 𝑆+ ≥
1
2 

𝑆c − 𝑆` ≥
1
2 

⋮ 

𝑆`e − 𝑆`e8+ ≥
1
2 

En sommant, on obtient : 

𝑆`e − 𝑆+ ≥
𝑘
2 ⟺ 𝑆`e ≥

𝑘
2 + 𝑆+ ⟺ 𝑆`e ≥

𝑘
2 + 1 

Ainsi, si 𝑘 ⟶ ∞, 𝑆`e ⟶ ∞. 
 

IV. TP1 : Calcul intégral 
 
L’objectif de ce TP sera de calculer  

U 𝑒8	
fg
` 𝑑𝑥

+

0
 

 
C’est une intégrale que l’on retrouve notamment dans la loi Normal. 
 
Vous allez calculer une valeur approchée de cette intégrale à l’aide des 3 méthodes vues dans le 
cours : 
1. Méthode des rectangles (Riemann),  
2. Méthodes des trapèzes, 
3. Méthode de Simpson. 
 
Pour chaque méthode, vous calculerez epsilon (𝜀) qui sera l’écart entre la valeur approchée et la 
valeur exacte afin de pouvoir comparer cet écart en fonction du nombre n d’intervalles choisis et 
vous calculerez combien il faut d’intervalles pour obtenir 𝜀 ≤ 108c. 
Il faudra impérativement créer une fonction integrale_rectangles, integrale_trapezes et 
integrale_simpson pour le calcul approché des intégrales. 
Vous conclurez sur la méthode qui semble avoir le moins besoin d’intervalles pour obtenir une bonne 
approximation. 
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Méthode Nombre d’intervalles pour atteindre 𝜺 ≤ 𝟏𝟎8𝟒 
Méthode des rectangles (Riemann)  

Méthodes des trapèzes  
Méthode de Simpson  

 
Aide Python : 
Pour la valeur absolue : abs(valeur) 
exponentielle : 
import numpy as np 
np.exp(valeur) 
 
Ou  
from numpy import * 
expl(valeur) 
 
Calcul d’une intégrale : 
import scipy.integrate as spi 
integrale = spi.quad(fonction, borne inf, borne sup)  
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Solution : 
 
Exercice 1 : 
 
On sait que : 

𝑆7 = 𝑎#𝑞(
7

(*0

= 𝑎
1 − 𝑞76+

1 − 𝑞 	𝑎𝑣𝑒𝑐	𝑎	𝑝𝑟𝑒𝑚𝑖𝑒𝑟	𝑡𝑒𝑟𝑚𝑒	𝑒𝑡	𝑞	𝑙𝑎	𝑟𝑎𝑖𝑠𝑜𝑛 

Pour notre somme, on a donc avec notre somme : 
 

𝑆7 =
1
4#(

1
4)

(
7

(*0

=
1
4
1 − (14)

76+

1 − 14
=
1
4
1 − (14)

76+

3
4

=
1
3 (1 − v

1
4w

76+

) 

Ainsi : 

𝑆 = lim
7⟶6)

𝑆7 = lim
7⟶6)

𝑆7 =
1
3z1 − v

1
4w

76+

{ =
1
3 

 
 
 
 
 
 


